Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 18: 1328361, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515789

RESUMEN

Up to approximately 70% of cancer survivors report persistent deficits in memory, attention, speed of information processing, multi-tasking, and mental health functioning, a series of symptoms known as "brain fog." The severity and duration of such effects can vary depending on age, cancer type, and treatment regimens. In particular, every year, hundreds of thousands of patients worldwide undergo radiotherapy (RT) for primary brain tumors and brain metastases originating from extracranial tumors. Besides its potential benefits in the control of tumor progression, recent studies indicate that RT reprograms the brain tumor microenvironment inducing increased activation of microglia and astrocytes and a consequent general condition of neuroinflammation that in case it becomes chronic could lead to a cognitive decline. Furthermore, radiation can induce endothelium reticulum (ER) stress directly or indirectly by generating reactive oxygen species (ROS) activating compensatory survival signaling pathways in the RT-surviving fraction of healthy neuronal and glial cells. In particular, the anomalous accumulation of misfolding proteins in neuronal cells exposed to radiation as a consequence of excessive activation of unfolded protein response (UPR) could pave the way to neurodegenerative disorders. Moreover, exposure of cells to ionizing radiation was also shown to affect the normal proteasome activity, slowing the degradation rate of misfolded proteins, and further exacerbating ER-stress conditions. This compromises several neuronal functions, with neuronal accumulation of ubiquitinated proteins with a consequent switch from proteasome to immunoproteasome that increases neuroinflammation, a crucial risk factor for neurodegeneration. The etiology of brain fog remains elusive and can arise not only during treatment but can also persist for an extended period after the end of RT. In this review, we will focus on the molecular pathways triggered by radiation therapy affecting cognitive functions and potentially at the origin of so-called "brain fog" symptomatology, with the aim to define novel therapeutic strategies to preserve healthy brain tissue from cognitive decline.

2.
Pharmacol Res ; 198: 106993, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37972722

RESUMEN

The treatment of bipolar disorder (BD) still remains a challenge. Melatonin (MLT), acting through its two receptors MT1 and MT2, plays a key role in regulating circadian rhythms which are dysfunctional in BD. Using a translational approach, we examined the implication and potential of MT1 receptors in the pathophysiology and psychopharmacology of BD. We employed a murine model of the manic phase of BD (Clock mutant (ClockΔ19) mice) to study the activation of MT1 receptors by UCM871, a selective partial agonist, in behavioral pharmacology tests and in-vivo electrophysiology. We then performed a high-resolution Nuclear Magnetic Resonance study on isolated membranes to characterize the molecular mechanism of interaction of UCM871. Finally, in a cohort of BD patients, we investigated the link between clinical measures of BD and genetic variants located in the MT1 receptor and CLOCK genes. We demonstrated that: 1) UCM871 can revert behavioral and electrophysiological abnormalities of ClockΔ19 mice; 2) UCM871 promotes the activation state of MT1 receptors; 3) there is a significant association between the number of severe manic episodes and MLT levels, depending on the genetic configuration of the MT1 rs2165666 variant. Overall, this work lends support to the potentiality of MT1 receptors as target for the treatment of BD.


Asunto(s)
Trastorno Bipolar , Melatonina , Psicofarmacología , Humanos , Ratones , Animales , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Melatonina/uso terapéutico , Melatonina/farmacología , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/agonistas
3.
iScience ; 26(11): 108050, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37876798

RESUMEN

The organization of fear memory involves the participation of multiple brain regions. However, it is largely unknown how fear memory is formed, which circuit pathways are used for "printing" memory engrams across brain regions, and the role of identified brain circuits in memory retrieval. With advanced genetic methods, we combinatorially blocked presynaptic output and manipulated N-methyl-D-aspartate receptor (NMDAR) in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) before and after cued fear conditioning. Further, we tagged fear-activated neurons during associative learning for optogenetic memory recall. We found that presynaptic mPFC and postsynaptic BLA NMDARs are required for fear memory formation, but not expression. Our results provide strong evidence that NMDAR-dependent synaptic plasticity drives multi-trace systems consolidation for the sequential printing of fear memory engrams from BLA to mPFC and, subsequently, to the other regions, for flexible memory retrieval.

4.
Biomedicines ; 11(6)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37371801

RESUMEN

The synthesis of melatonin (MLT) physiologically decreases during aging. Treatment with MLT has shown anxiolytic, hypnotic, and analgesic effects, but little is known about possible age-dependent differences in its efficacy. Therefore, we studied the effects of MLT (20 mg/kg, intraperitoneal) on anxiety-like behavior (open field (OFT), elevated plus maze (EPMT), three-chamber sociability, and marble-burying (MBT) tests), and the medial prefrontal cortex (mPFC)-dorsal hippocampus (dHippo) circuit in adolescent (35-40 days old) and adult (three-five months old) C57BL/6 male mice. MLT did not show any effect in adolescents in the OFT and EPMT. In adults, compared to vehicles, it decreased locomotor activity and time spent in the center of the arena in the OFT and time spent in the open arms in the EPMT. In the MBT, no MLT effects were observed in both age groups. In the three-chamber sociability test, MLT decreased sociability and social novelty in adults, while it increased sociability in adolescents. Using local field potential recordings, we found higher mPFC-dHippo synchronization in the delta and low-theta frequency ranges in adults but not in adolescents after MLT treatment. Here, we show age-dependent differences in the effects of MLT in anxiety paradigms and in the modulation of the mPFC-dHippo circuit, indicating that when investigating the pharmacology of the MLT system, age can significantly impact the study outcomes.

5.
bioRxiv ; 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37205496

RESUMEN

Ischemic stroke results in a loss of tissue homeostasis and integrity, the underlying pathobiology of which stems primarily from the depletion of cellular energy stores and perturbation of available metabolites 1 . Hibernation in thirteen-lined ground squirrels (TLGS), Ictidomys tridecemlineatus , provides a natural model of ischemic tolerance as these mammals undergo prolonged periods of critically low cerebral blood flow without evidence of central nervous system (CNS) damage 2 . Studying the complex interplay of genes and metabolites that unfolds during hibernation may provide novel insights into key regulators of cellular homeostasis during brain ischemia. Herein, we interrogated the molecular profiles of TLGS brains at different time points within the hibernation cycle via RNA sequencing coupled with untargeted metabolomics. We demonstrate that hibernation in TLGS leads to major changes in the expression of genes involved in oxidative phosphorylation and this is correlated with an accumulation of the tricarboxylic acid (TCA) cycle intermediates citrate, cis-aconitate, and α-ketoglutarate-αKG. Integration of the gene expression and metabolomics datasets led to the identification of succinate dehydrogenase (SDH) as the critical enzyme during hibernation, uncovering a break in the TCA cycle at that level. Accordingly, the SDH inhibitor dimethyl malonate (DMM) was able to rescue the effects of hypoxia on human neuronal cells in vitro and in mice subjected to permanent ischemic stroke in vivo . Our findings indicate that studying the regulation of the controlled metabolic depression that occurs in hibernating mammals may lead to novel therapeutic approaches capable of increasing ischemic tolerance in the CNS.

6.
Front Neurosci ; 17: 1140679, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090807

RESUMEN

Developmental and epileptic encephalopathies are childhood syndromes of severe epilepsy associated with cognitive and behavioral disorders. Of note, epileptic seizures represent only a part, although substantial, of the clinical spectrum. Whether the epileptiform activity per se accounts for developmental and intellectual disabilities is still unclear. In a few cases, seizures can be alleviated by antiseizure medication (ASM). However, the major comorbid features associated remain unsolved, including psychiatric disorders such as autism-like and attention deficit hyperactivity disorder-like behavior. Not surprisingly, the number of genes known to be involved is continuously growing, and genetically engineered rodent models are valuable tools for investigating the impact of gene mutations on local and distributed brain circuits. Despite the inconsistencies and problems arising in the generation and validation of the different preclinical models, those are unique and precious tools to identify new molecular targets, and essential to provide prospects for effective therapeutics.

7.
PLoS One ; 18(3): e0282261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36862753

RESUMEN

The auditory brainstem implant (ABI) can provide hearing sensation to individuals where the auditory nerve is damaged. However, patient outcomes with the ABI are typically much poorer than those for cochlear implant recipients. A major limitation to ABI outcomes is the number of implanted electrodes that can produce auditory responses to electric stimulation. One of the greatest challenges in ABI surgery is the intraoperative positioning of the electrode paddle, which must fit snugly within the cochlear nucleus complex. While there presently is no optimal procedure for intraoperative electrode positioning, intraoperative assessments may provide useful information regarding viable electrodes that may be included in patients' clinical speech processors. Currently, there is limited knowledge regarding the relationship between intraoperative data and post-operative outcomes. Furthermore, the relationship between initial ABI stimulation with and long-term perceptual outcomes is unknown. In this retrospective study, we reviewed intraoperative electrophysiological data from 24 ABI patients (16 adults and 8 children) obtained with two stimulation approaches that differed in terms of neural recruitment. The interoperative electrophysiological recordings were used to estimate the number of viable electrodes and were compared to the number of activated electrodes at initial clinical fitting. Regardless of the stimulation approach, the intraoperative estimate of viable electrodes greatly overestimated the number of active electrodes in the clinical map. The number of active electrodes was associated with long-term perceptual outcomes. Among patients with 10-year follow-up, at least 11/21 active electrodes were needed to support good word detection and closed-set recognition and 14/21 electrodes to support good open-set word and sentence recognition. Perceptual outcomes were better for children than for adults, despite a lower number of active electrodes.


Asunto(s)
Implantes Auditivos de Tronco Encefálico , Implantes Cocleares , Adulto , Niño , Humanos , Potenciales Evocados Auditivos del Tronco Encefálico , Estudios de Seguimiento , Estudios Retrospectivos
9.
Front Cell Neurosci ; 16: 1082211, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582213

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique, and it has been increasingly used as a nonpharmacological intervention for the treatment of various neurological and neuropsychiatric diseases, including depression. In humans, rTMS over the prefrontal cortex is used to induce modulation of the neural circuitry that regulates emotions, cognition, and depressive symptoms. However, the underlying mechanisms are still unknown. In this study, we investigated the effects of a short (5-day) treatment with high-frequency (HF) rTMS (15 Hz) on emotional behavior and prefrontal cortex morphological plasticity in mice. Mice that had undergone HF-rTMS showed an anti-depressant-like activity as evidenced by decreased immobility time in both the Tail Suspension Test and the Forced Swim Test along with increased spine density in both layer II/III and layer V apical and basal dendrites. Furthermore, dendritic complexity assessed by Sholl analysis revealed increased arborization in the apical portions of both layers, but no modifications in the basal dendrites branching. Overall, these results indicate that the antidepressant-like activity of HF-rTMS is paralleled by structural remodeling in the medial prefrontal cortex.

10.
Nat Commun ; 13(1): 7579, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482070

RESUMEN

The adult brain retains over life endogenous neural stem/precursor cells (eNPCs) within the subventricular zone (SVZ). Whether or not these cells exert physiological functions is still unclear. In the present work, we provide evidence that SVZ-eNPCs tune structural, electrophysiological, and behavioural aspects of striatal function via secretion of insulin-like growth factor binding protein-like 1 (IGFBPL1). In mice, selective ablation of SVZ-eNPCs or selective abrogation of IGFBPL1 determined an impairment of striatal medium spiny neuron morphology, a higher failure rate in GABAergic transmission mediated by fast-spiking interneurons, and striatum-related behavioural dysfunctions. We also found IGFBPL1 expression in the human SVZ, foetal and induced-pluripotent stem cell-derived NPCs. Finally, we found a significant correlation between SVZ damage, reduction of striatum volume, and impairment of information processing speed in neurological patients. Our results highlight the physiological role of adult SVZ-eNPCs in supporting cognitive functions by regulating striatal neuronal activity.


Asunto(s)
Proteínas de Unión a Factor de Crecimiento Similar a la Insulina , Ventrículos Laterales , Células-Madre Neurales , Proteínas Supresoras de Tumor , Animales , Humanos , Ratones , Electrofisiología Cardíaca , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Células-Madre Neurales/fisiología , Proteínas Supresoras de Tumor/fisiología , Ventrículos Laterales/fisiología
11.
Methods Mol Biol ; 2550: 433-441, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36180711

RESUMEN

Melatonin is a potent neuroprotective agent which has shown therapeutic effects in animal models of brain injury such as stroke. Currently, there are few effective treatments for the therapeutics of stroke, the second leading cause of death and a major cause of disability worldwide. As demonstrated by the high number of publications during the last two decades, there is growing interest in understanding how and if melatonin could be a possible drug for stroke in humans, given also its very low and limited toxicity. Here, we describe the detailed protocol for performing the photothrombotic model of stroke which involves the occlusion of small cerebral vessels caused by the photoactivation of the previously injected light-sensitive dye Rose Bengal. Importantly, this model allows for the study of cellular and molecular mechanisms underlying the pathophysiology of stroke and thus can be used for investigating the neuropharmacological role of melatonin and the melatonin system in stroke. In particular, future research is warranted to demonstrate how and if melatonin impacts neurodegeneration, neuroprotection, and neuro-regeneration occurring after the brain injury caused by the occlusion of cerebral vessels.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Melatonina , Fármacos Neuroprotectores , Accidente Cerebrovascular , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/etiología , Modelos Animales de Enfermedad , Humanos , Melatonina/farmacología , Melatonina/uso terapéutico , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Rosa Bengala/farmacología , Rosa Bengala/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/etiología
12.
Biomolecules ; 12(4)2022 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-35454177

RESUMEN

Early stroke therapeutic approaches rely on limited options, further characterized by a narrow therapeutic time window. In this context, the application of transcranial direct current stimulation (tDCS) in the acute phases after brain ischemia is emerging as a promising non-invasive tool. Despite the wide clinical application of tDCS, the cellular mechanisms underlying its positive effects are still poorly understood. Here, we explored the effects of cathodal tDCS (C-tDCS) 6 h after focal forelimb M1 ischemia in Cx3CR1GFP/+ mice. C-tDCS improved motor functionality of the affected forelimb, as assessed by the cylinder and foot-fault tests at 48 h, though not changing the ischemic volume. In parallel, histological analysis showed that motor recovery is associated with decreased microglial cell density in the area surrounding the ischemic core, while astrocytes were not affected. Deeper analysis of microglia morphology within the perilesional area revealed a shift toward a more ramified healthier state, with increased processes' complexity and a less phagocytic anti-inflammatory activity. Taken together, our findings suggest a positive role for early C-tDCS after ischemia, which is able to modulate microglia phenotype and morphology in parallel to motor recovery.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Animales , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Electrodos , Ratones , Microglía/patología , Accidente Cerebrovascular/patología , Estimulación Transcraneal de Corriente Directa/métodos
13.
Front Cell Neurosci ; 16: 1002487, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589283

RESUMEN

Tumor associated macrophages (TAMs) are the mostprevalent cells recruited in the tumor microenvironment (TME). Once recruited, TAMs acquire a pro-tumor phenotype characterized by a typical morphology: ameboid in the tumor core and with larger soma and thick branches in the tumor periphery. Targeting TAMs by reverting them to an anti-tumor phenotype is a promising strategy for cancer immunotherapy. Taking advantage of Cx3cr1GFP/WT heterozygous mice implanted with murine glioma GL261-RFP cells we investigated the role of Ca2+-activated K+ channel (KCa3.1) on the phenotypic shift of TAMs at the late stage of glioma growth through in vivo two-photon imaging. We demonstrated that TAMs respond promptly to KCa3.1 inhibition using a selective inhibitor of the channel (TRAM-34) in a time-dependent manner by boosting ramified projections attributable to a less hypertrophic phenotype in the tumor core. We also revealed a selective effect of drug treatment by reducing both glioma cells and TAMs in the tumor core with no interference with surrounding cells. Taken together, our data indicate a TRAM-34-dependent progressive morphological transformation of TAMs toward a ramified and anti-tumor phenotype, suggesting that the timing of KCa3.1 inhibition is a key point to allow beneficial effects on TAMs.

14.
Behav Brain Res ; 410: 113352, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-33979657

RESUMEN

High-frequency repeated transcranial magnetic stimulation (HF-rTMS) is a safe non-invasive neuromodulatory technique and there is a body of evidence shows that it can modulate plasticity in different brain areas. One of the most interesting application of HF-rTMS is the modulation of plasticity in primary motor cortex (M1) to promote recovery after brain injuries. However, the underlying mechanism by which HF-rTMS modulates motor cortex plasticity remain to be investigated. In this study, we investigated the effects of HF-rTMS treatment on morphological plasticity of pyramidal neurons in layer II/III (L2/3) of the primary motor cortex in mice. Our results show that the treatment did not increase anxiety in mice in the open field test and the elevated plus-maze test. Treated mice displayed increased total spine density in apical and basal dendrites, with a predominance of thin spines. The treatment also increased dendritic complexity, as assessed by Sholl analysis at both apical and basal dendrites. Collectively, the results show that HF-rTMS induced remarkable changes in dendritic complexity in primary motor cortex L2/3 connections which may strengthen corticocortical connections increasing integration of information across cortical areas. The data support the use of HF-rTMS as a circuit-targeting neuromodulation strategy.


Asunto(s)
Conducta Animal , Dendritas , Corteza Motora , Plasticidad Neuronal , Células Piramidales , Estimulación Magnética Transcraneal , Animales , Conducta Animal/fisiología , Dendritas/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Corteza Motora/anatomía & histología , Corteza Motora/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/citología , Células Piramidales/fisiología
15.
Artículo en Inglés | MEDLINE | ID: mdl-32521613

RESUMEN

Low-frequency repetitive transcranial magnetic stimulation (1-Hz rTMS) is a promising noninvasive tool for the treatment of depression. Hippocampal neuronal plasticity is thought to play a pivotal role in the pathophysiology of depressive disorders and the mechanism of action of antidepressant treatments. We investigated the effect of 1-Hz rTMS treatment on hippocampal dentate gyrus structural plasticity and related emotional behaviors modifications. Experimentally, adult male mice received either five days of 1-Hz rTMS or Sham stimulation. After stimulation, the mice underwent a battery of tests for anxiety-like and depression-like behaviors. We also tested the effect of treatment on mature and newly generated granule cell dendritic complexity. Our data showed that 1-Hz rTMS induced structural plasticity in mature granule cells, as evidenced by increased dendritic length and number of intersections. However, the stimulation did not increase the proliferation of the dentate gyrus progenitor cells. On the contrary, the stimulated mice showed increased dendritic complexity of newly generated neurons. Moreover, 1-Hz rTMS resulted in antidepressant-like effects in the tail suspension test, but it did not affect anxiety-like behaviors. Therefore, our results indicate that 1-Hz rTMS modulates dentate gyrus morphological plasticity in mature and newly generated neurons. Furthermore, our data provide some evidence of an association between the antidepressant-like activity of 1-Hz rTMS and structural plasticity in the hippocampus.


Asunto(s)
Conducta Animal , Neuronas , Estimulación Magnética Transcraneal , Animales , Giro Dentado , Hipocampo , Masculino , Ratones , Neurogénesis
20.
J Neurol ; 266(7): 1819-1820, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30284594
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...